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Clustering vs Classification

Clustering = unsupervised learning
we have no knowledge of the classes

Classification = supervised learning
experts were used to classify the training set



Clustering scope

Minimise the distance between objects with
similar features and maximise the distance
between objects with different features.






K- Nearest Neighbour or K-means

If it looks like a duck, swims like a
duck, and quacks like a duck
then it is probably a duck.

K-means classifies objects
based on it’s closest

neighbours.
The white animal is among ducks,
so he is probably a duck.




K-means basics

- a set of instances (training dataset)

- a distance (metric) to compute the similarity
between objects

- the number of clusters: k



‘\flistance

Naive method:
1. calculate the distance between all the
training records and the new object
2. pick only the elements that have a
smaller metric than the radius
3. Assign the class which is the most
frequent

Can you tell what is the problem
here?



The major problem comes from
establishing the radius. In this case
with a larger radius the object is put
in a different class than before.

Solution:
1. weight the vote of a each
neighbour: 1/distance’2
2. sum the votes for each class
3. the class with the biggest sum
is used for the new object



Noise problems

According to k-means algorithm the “dog” is
actually a little “duck”.

K-means does not identify noise. A noise
object is defined as an object that has similar
characteristics with the surrounding objects.
But he represents a different type of objects
than the ones that surround him.




Metrics

For numerical attributes: Euclidian distance
( the geometric distance)

Ry N

ng nyl|’

For categorical attributes:  ax,%)=%
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X , I=1,2 represent the attributes
ni represent the corresponding frequencies



Categorical attribute distance calculation

class Single Married Divorced
Yes 2 0 1
No 2 4 1

distance(Single, Married)=(single&yes / single - married&yes/married)
+ (single&no/single - married&no/married)
=(2/4-0/4) + (2/4 - 4/4) =1



Algorithm description

use k-points as initial centroids

2. calculate all the distances between all the points and all
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the k-centroids

assign each point to it's nearest centroid (class)
calculate the new centroids of each class

repeat steps from 2 to 5 until no object changes class



Step 1 round 1

[]
[] Initial centroids
From the objects you select k of
[] them to be initial centroid.
[] You chose as many initial
[] centroid as the number of
L] clusters.



Step 2 round 1

Initial centroids

For each centroid you calculate
every distances with all the
other points.



Step 3 round 1

[ ]
m Initial centroids

[ | You assign to each point the

class of the centroid that is
[ ] closer.
[]
[ ]
[ ]



Step 4 round 1

|
_ Initial centroids

? [ ] You calculate the new
centroids. A centroid can be

] thought as the centre of gravity

] of each class
u
|

New centroids (]



Step 2 round 2
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? [ | For each new centroid you
calculate every distances with
| ] all the other points.
L]
B =

R

New centroids (]




Step 3 round 2

New centroids

Objects changed class

.

[]

You assign to each point the
class of the centroid that is
closer.

In the next step centroids will
be changed but in the next
round no objects will change
class. The algorithm will stop.



Stop conditions

The “no change” condition is not good. On large datasets even at the 10000
round there is an objects that changes class.

Solution 1: if less than a certain percent of objects change class the algorithm
will stop (1%). Hard to determine the percent as it varies from dataset to
dataset.

Solution 2: if a certain number of rounds has been made. Hard to determine the
number of repetitions needed.

Solution 3: Combine solution 1&2.



Choosing initial centroids

[] [] Can you spot the problem here?

[]

|:| Initial centroids



Although there are clearly 2 clusters here, because one initial
centroid was an outlier it affected the clusterization process.

New centroids

Initial centroids

The true classes

Solution:

Repeat K-means multiple
times with random initial
centroids. Choose the best
result clusterisation.



How to determine the best clusterization?



Sum of Squared Errors

1. For each centroid you calculate the sum of the squared distances to all the
nodes in that cluster.
2. Repeat step 1 for each centroid, then sum all the sums (SSE).

The clusterization with the smallest SSE is the best.



How to determine the number of clusters?



Solutions for determining K

e through visualisation

e randomly check different K and choose the
one with the best result

e through hierarchical clustering



K-means enforces creation of clusters that have the
same size. Which in the real world is a problem.
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Clustering in Weka

e O O a Explorer
| Preprocess = Classif m i Select attributes = Visualize |

Cluster mode
() Use training set

Clusterer outpe

Clusterer
plekhMeans -N 2 -A "weka.core.ManhattanDistance -R first-last" -] 500 -5 10 Cluster tab |n PreV|eW

LY
Attribute FW ]
(506) (184) Choose an algorithm

() Supplied test set Set...
(*) Percentage split % 66 preg 3 4
N plas 117.5 134.5
() Classes to clusters evaluation pres 72 74
(Nom) class SK1f 22 21
insu 0 0
[V Store clusters for visualization mass 32.3 34.2
pedi 0.3745 0.444
age 30 36

\ Ignore attributes | || class tested_negative tested_positive tested_ni

[ Start Stop

Result list (right-click for options)

13:07:41 - SimpleKMeans
13:09:16 - SimpleKMeans
13:10:51 - SimpleKMeans

Status
OK

Time taken to build model (percentage split)
Clustered Instances

0 84 ( 32%)
1 178 ( 68%)

| Log \‘xxo

: 0.01 seconds

Evaluate the clustering



SimpleKmeans algorithm

e OO0 weka.gui.GenericObjectEditor

weka.clusterers.SimpleKMeans
About

Cluster data using the k means algorithm.

L3
displayStdDevs False

More

Capabilities

a

distanceFunction I Choose

EuclideanDistance -R first-l:

dontReplaceMissingValues False

a

maxlterationsI 500

|<_

numClusters |2
preservelnstancesOrder False

seed |10

Open... Save...

OK

Cancel

a

Choose distance

Maximum number of
iterations



Read the output of the algorithm

Number of iterations: 7
Within cluster sum of squared errors: 12.143688281579722
1ss1ing values globally replace

Number of iterations &

Cluster centroids: SSE
Cluster#
Attribute Full Data ) 1
(150) (100) (50)
sepallength 5.8433 6.262 5.006 Centroid value for each
sepalwidth 3.054 . 3.418 :
petallength 3.7587 4,906 .63 cluster over each attribute

petalwidth 1.1987 1.676 0.244



=== Model and evaluation on training set ===

Clustered Instances

0 100 ( 67%)
1 50 ( 33%)

Class attribute: class
Classes to Clusters:

@ 1 <-- assigned to cluster
@ 50 | Iris-setosa

50 0 | Iris-versicolor

50 0 | Iris-virginica

Cluster @ <-- Iris-versicolor

Incorrectly clustered instances :

50.0

33.3333 %

Clusters size

Confusion matrix

Performance of the
algorthm



Questions?



